8 research outputs found

    Cognitive load during planned and unplanned virtual shopping:Evidence from a neurophysiological perspective

    Get PDF
    Rapid adoption of virtual-reality-assisted retail applications is inadvertently reshaping consumer buying patterns, making it crucial for businesses to enhance their shopping experience. This new scenario challenges marketers with unique hurdles in both the commercialization of products and in managing information cues derived via VR retailing. Therefore, this study examined consumers’ impulsive behavior and unplanned purchases in a virtual retail store, using self-reports and electroencephalography. Borrowing assorted perspectives from retailing, virtual reality, and neuromarketing literature, we extended the stimulus-organism-response framework to evaluate how unplanned behavior evolves through conscious and unconscious measures. We found that consumers’ impulsiveness was significantly associated with their unplanned expenditure and the number of unplanned purchases. Using mediation analysis, we observed that flow experience during shopping partially mediated the relationship between the sense of presence and the desire to stay longer in a virtual shopping store. Desire to stay in the virtual store positively influenced store satisfaction, basket-size deviation, and budget deviation. Additionally, cognitive workload obtained via electroencephalogram revealed significant differences during both planned and unplanned purchases. These findings provide fresh opportunities for retailers to leverage the disruptive potential of immersive and interactive virtual technology to transform consumer shopping experiences

    Motivation in the Metaverse:A Dual-Process Approach to Consumer Choices in A Virtual Reality Supermarket

    Get PDF
    Introduction: Consumer decision-making processes involve a complex interrelation between perception, emotion, and cognition. Despite a vast and diverse literature, little effort has been invested in investigating the neural mechanism behind such processes. Methods: In the present work, our interest was to investigate whether asymmetrical activation of the frontal lobe of the brain could help to characterize consumer’s choices. To obtain stronger experimental control, we devised an experiment in a virtual reality retail store, while simultaneously recording participant brain responses using electroencephalogram (EEG). During the virtual store test, participants completed two tasks; first, to choose items from a predefined shopping list, a phase we termed as “planned purchase”. Second, subjects were instructed that they could also choose products that were not on the list, which we labeled as “unplanned purchase.” We assumed that the planned purchases were associated with a stronger cognitive engagement, and the second task was more reliant on immediate emotional responses. Results: By analyzing the EEG data based on frontal asymmetry measures, we find that frontal asymmetry in the gamma band reflected the distinction between planned and unplanned decisions, where unplanned purchases were accompanied by stronger asymmetry deflections (relative frontal left activity was higher). In addition, frontal asymmetry in the alpha, beta, and gamma ranges illustrate clear differences between choices and no-choices periods during the shopping tasks. Discussion: These results are discussed in light of the distinction between planned and unplanned purchase in consumer situations, how this is reflected in the relative cognitive and emotional brain responses, and more generally how this can influence research in the emerging area of virtual and augmented shopping

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Approximating Helical Pile Pullout Resistance Using Metaheuristic-Enabled Fuzzy Hybrids

    No full text
    Piles have paramount importance for various structural systems in a wide scope of civil and geotechnical engineering works. Accurately predicting the pullout resistance of piles is critical for the long-term structural resilience of civil infrastructures. In this research, three sophisticated models are employed for precisely predicting the pullout resistance (Pul) of helical piles. Metaheuristic schemes of gray wolf optimization (GWO), differential evolution (DE), and ant colony optimization (ACO) were deployed for tuning an adaptive neuro-fuzzy inference system (ANFIS) in mapping the Pul behavior from three independent factors, namely the embedment ratio, the density class, and the ratio of the shaft base diameter to the shaft diameter. Based on the results, i.e., the Pearson’s correlation coefficient (R = 0.99986 vs. 0.99962 and 0.99981) and root mean square error (RMSE = 7.2802 vs. 12.1223 and 8.5777), the GWO-ANFIS surpassed the DE- and ACO-based ensembles in the training phase. However, smaller errors were obtained for the DE-ANFIS and ACO-ANFIS in predicting the Pul pattern. Overall, the results show that all three models are capable of predicting the Pul for helical piles in both loose and dense soils with superior accuracy. Hence, the combination of ANFIS and the mentioned metaheuristic algorithms is recommended for real-world purposes
    corecore